3.2.67 \(\int \frac {(c+d \sec (e+f x))^2}{\sqrt {a+a \sec (e+f x)}} \, dx\) [167]

3.2.67.1 Optimal result
3.2.67.2 Mathematica [C] (warning: unable to verify)
3.2.67.3 Rubi [A] (verified)
3.2.67.4 Maple [B] (warning: unable to verify)
3.2.67.5 Fricas [A] (verification not implemented)
3.2.67.6 Sympy [F]
3.2.67.7 Maxima [F]
3.2.67.8 Giac [F(-2)]
3.2.67.9 Mupad [F(-1)]

3.2.67.1 Optimal result

Integrand size = 27, antiderivative size = 183 \[ \int \frac {(c+d \sec (e+f x))^2}{\sqrt {a+a \sec (e+f x)}} \, dx=\frac {2 d^2 \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)}}+\frac {2 \sqrt {a} c^2 \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right ) \tan (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}-\frac {\sqrt {2} \sqrt {a} (c-d)^2 \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {2} \sqrt {a}}\right ) \tan (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}} \]

output
2*d^2*tan(f*x+e)/f/(a+a*sec(f*x+e))^(1/2)+2*c^2*arctanh((a-a*sec(f*x+e))^( 
1/2)/a^(1/2))*a^(1/2)*tan(f*x+e)/f/(a-a*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e)) 
^(1/2)-(c-d)^2*arctanh(1/2*(a-a*sec(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*2^(1/2) 
*a^(1/2)*tan(f*x+e)/f/(a-a*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2)
 
3.2.67.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.73 (sec) , antiderivative size = 295, normalized size of antiderivative = 1.61 \[ \int \frac {(c+d \sec (e+f x))^2}{\sqrt {a+a \sec (e+f x)}} \, dx=\frac {2 \cos \left (\frac {1}{2} (e+f x)\right ) \cos ^{\frac {3}{2}}(e+f x) (c+d \sec (e+f x))^2 \left (-\frac {(c-d)^2 \sqrt {-1+\cos (e+f x)} (2+\cos (e+f x)) \csc ^3\left (\frac {1}{2} (e+f x)\right ) \left (-2 \text {arctanh}\left (\sqrt {-\sec (e+f x) \sin ^2\left (\frac {1}{2} (e+f x)\right )}\right )+\sqrt {2-2 \sec (e+f x)}\right )}{2 \sqrt {2}}+\frac {4 c d \sin \left (\frac {1}{2} (e+f x)\right )}{\sqrt {\cos (e+f x)}}+c^2 \left (\sqrt {2} \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (e+f x)\right )\right )-\frac {2 \sin \left (\frac {1}{2} (e+f x)\right )}{\sqrt {\cos (e+f x)}}\right )-\frac {(c-d)^2 \operatorname {Hypergeometric2F1}\left (2,\frac {5}{2},\frac {7}{2},-\sec (e+f x) \sin ^2\left (\frac {1}{2} (e+f x)\right )\right ) \sin \left (\frac {1}{2} (e+f x)\right ) \sin ^2(e+f x)}{10 \cos ^{\frac {5}{2}}(e+f x)}\right )}{f (d+c \cos (e+f x))^2 \sqrt {a (1+\sec (e+f x))}} \]

input
Integrate[(c + d*Sec[e + f*x])^2/Sqrt[a + a*Sec[e + f*x]],x]
 
output
(2*Cos[(e + f*x)/2]*Cos[e + f*x]^(3/2)*(c + d*Sec[e + f*x])^2*(-1/2*((c - 
d)^2*Sqrt[-1 + Cos[e + f*x]]*(2 + Cos[e + f*x])*Csc[(e + f*x)/2]^3*(-2*Arc 
Tanh[Sqrt[-(Sec[e + f*x]*Sin[(e + f*x)/2]^2)]] + Sqrt[2 - 2*Sec[e + f*x]]) 
)/Sqrt[2] + (4*c*d*Sin[(e + f*x)/2])/Sqrt[Cos[e + f*x]] + c^2*(Sqrt[2]*Arc 
Sin[Sqrt[2]*Sin[(e + f*x)/2]] - (2*Sin[(e + f*x)/2])/Sqrt[Cos[e + f*x]]) - 
 ((c - d)^2*Hypergeometric2F1[2, 5/2, 7/2, -(Sec[e + f*x]*Sin[(e + f*x)/2] 
^2)]*Sin[(e + f*x)/2]*Sin[e + f*x]^2)/(10*Cos[e + f*x]^(5/2))))/(f*(d + c* 
Cos[e + f*x])^2*Sqrt[a*(1 + Sec[e + f*x])])
 
3.2.67.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.78, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {3042, 4428, 27, 198, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c+d \sec (e+f x))^2}{\sqrt {a \sec (e+f x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (c+d \csc \left (e+f x+\frac {\pi }{2}\right )\right )^2}{\sqrt {a \csc \left (e+f x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4428

\(\displaystyle -\frac {a^2 \tan (e+f x) \int \frac {\cos (e+f x) (c+d \sec (e+f x))^2}{a (\sec (e+f x)+1) \sqrt {a-a \sec (e+f x)}}d\sec (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \tan (e+f x) \int \frac {\cos (e+f x) (c+d \sec (e+f x))^2}{(\sec (e+f x)+1) \sqrt {a-a \sec (e+f x)}}d\sec (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 198

\(\displaystyle -\frac {a \tan (e+f x) \int \left (\frac {\cos (e+f x) c^2}{\sqrt {a-a \sec (e+f x)}}+\frac {d^2}{\sqrt {a-a \sec (e+f x)}}-\frac {(c-d)^2}{(\sec (e+f x)+1) \sqrt {a-a \sec (e+f x)}}\right )d\sec (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a \tan (e+f x) \left (-\frac {2 c^2 \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right )}{\sqrt {a}}+\frac {\sqrt {2} (c-d)^2 \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {a}}-\frac {2 d^2 \sqrt {a-a \sec (e+f x)}}{a}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

input
Int[(c + d*Sec[e + f*x])^2/Sqrt[a + a*Sec[e + f*x]],x]
 
output
-((a*((-2*c^2*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a]])/Sqrt[a] + (Sqrt[2 
]*(c - d)^2*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/(Sqrt[2]*Sqrt[a])])/Sqrt[a] - 
 (2*d^2*Sqrt[a - a*Sec[e + f*x]])/a)*Tan[e + f*x])/(f*Sqrt[a - a*Sec[e + f 
*x]]*Sqrt[a + a*Sec[e + f*x]]))
 

3.2.67.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 198
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_))^(q_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c 
 + d*x)^n*(e + f*x)^p*(g + h*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, 
 m, n}, x] && IntegersQ[p, q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4428
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*( 
d_.) + (c_))^(n_.), x_Symbol] :> Simp[a^2*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e 
 + f*x]]*Sqrt[a - b*Csc[e + f*x]]))   Subst[Int[(a + b*x)^(m - 1/2)*((c + d 
*x)^n/(x*Sqrt[a - b*x])), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, 
 f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0 
] && IntegerQ[m - 1/2]
 
3.2.67.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(347\) vs. \(2(158)=316\).

Time = 5.11 (sec) , antiderivative size = 348, normalized size of antiderivative = 1.90

method result size
default \(\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\, \left (\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\right ) \sqrt {2}\, c^{2}-\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right ) c^{2}+2 \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right ) c d -\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right ) d^{2}+2 d^{2} \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )\right )}{f a}\) \(348\)
parts \(-\frac {c^{2} \sqrt {a \left (\sec \left (f x +e \right )+1\right )}\, \sqrt {-\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \left (\sqrt {2}\, \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\cot \left (f x +e \right )^{2}-2 \csc \left (f x +e \right ) \cot \left (f x +e \right )+\csc \left (f x +e \right )^{2}-1}\right )-2 \,\operatorname {arctanh}\left (\frac {\sin \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right ) \sqrt {-\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}}\right )\right )}{f a}-\frac {d^{2} \sqrt {a \left (\sec \left (f x +e \right )+1\right )}\, \left (\sqrt {2}\, \sqrt {-\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\cot \left (f x +e \right )^{2}-2 \csc \left (f x +e \right ) \cot \left (f x +e \right )+\csc \left (f x +e \right )^{2}-1}\right )+2 \cot \left (f x +e \right )-2 \csc \left (f x +e \right )\right )}{f a}+\frac {2 c d \sqrt {-\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sqrt {a \left (\sec \left (f x +e \right )+1\right )}\, \sqrt {2}\, \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\cot \left (f x +e \right )^{2}-2 \csc \left (f x +e \right ) \cot \left (f x +e \right )+\csc \left (f x +e \right )^{2}-1}\right )}{f a}\) \(349\)

input
int((c+d*sec(f*x+e))^2/(a+a*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/f/a*(-2*a/((1-cos(f*x+e))^2*csc(f*x+e)^2-1))^(1/2)*(((1-cos(f*x+e))^2*cs 
c(f*x+e)^2-1)^(1/2)*arctanh(2^(1/2)/((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2 
)*(-cot(f*x+e)+csc(f*x+e)))*2^(1/2)*c^2-((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^ 
(1/2)*ln(csc(f*x+e)-cot(f*x+e)+((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2))*c^ 
2+2*((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)*ln(csc(f*x+e)-cot(f*x+e)+((1-c 
os(f*x+e))^2*csc(f*x+e)^2-1)^(1/2))*c*d-((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^ 
(1/2)*ln(csc(f*x+e)-cot(f*x+e)+((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2))*d^ 
2+2*d^2*(-cot(f*x+e)+csc(f*x+e)))
 
3.2.67.5 Fricas [A] (verification not implemented)

Time = 1.96 (sec) , antiderivative size = 481, normalized size of antiderivative = 2.63 \[ \int \frac {(c+d \sec (e+f x))^2}{\sqrt {a+a \sec (e+f x)}} \, dx=\left [\frac {4 \, d^{2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) + \sqrt {2} {\left (a c^{2} - 2 \, a c d + a d^{2} + {\left (a c^{2} - 2 \, a c d + a d^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {-\frac {1}{a}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 3 \, \cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) - 1}{\cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) + 1}\right ) - 2 \, {\left (c^{2} \cos \left (f x + e\right ) + c^{2}\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{2 \, {\left (a f \cos \left (f x + e\right ) + a f\right )}}, \frac {2 \, d^{2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) - 2 \, {\left (c^{2} \cos \left (f x + e\right ) + c^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) + \frac {\sqrt {2} {\left (a c^{2} - 2 \, a c d + a d^{2} + {\left (a c^{2} - 2 \, a c d + a d^{2}\right )} \cos \left (f x + e\right )\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right )}{\sqrt {a}}}{a f \cos \left (f x + e\right ) + a f}\right ] \]

input
integrate((c+d*sec(f*x+e))^2/(a+a*sec(f*x+e))^(1/2),x, algorithm="fricas")
 
output
[1/2*(4*d^2*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e) + sqrt(2) 
*(a*c^2 - 2*a*c*d + a*d^2 + (a*c^2 - 2*a*c*d + a*d^2)*cos(f*x + e))*sqrt(- 
1/a)*log((2*sqrt(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt(-1/a)*cos 
(f*x + e)*sin(f*x + e) + 3*cos(f*x + e)^2 + 2*cos(f*x + e) - 1)/(cos(f*x + 
 e)^2 + 2*cos(f*x + e) + 1)) - 2*(c^2*cos(f*x + e) + c^2)*sqrt(-a)*log((2* 
a*cos(f*x + e)^2 + 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos( 
f*x + e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/(a*f*cos( 
f*x + e) + a*f), (2*d^2*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + 
e) - 2*(c^2*cos(f*x + e) + c^2)*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/c 
os(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) + sqrt(2)*(a*c^2 - 2*a*c 
*d + a*d^2 + (a*c^2 - 2*a*c*d + a*d^2)*cos(f*x + e))*arctan(sqrt(2)*sqrt(( 
a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e)))/sqr 
t(a))/(a*f*cos(f*x + e) + a*f)]
 
3.2.67.6 Sympy [F]

\[ \int \frac {(c+d \sec (e+f x))^2}{\sqrt {a+a \sec (e+f x)}} \, dx=\int \frac {\left (c + d \sec {\left (e + f x \right )}\right )^{2}}{\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )}}\, dx \]

input
integrate((c+d*sec(f*x+e))**2/(a+a*sec(f*x+e))**(1/2),x)
 
output
Integral((c + d*sec(e + f*x))**2/sqrt(a*(sec(e + f*x) + 1)), x)
 
3.2.67.7 Maxima [F]

\[ \int \frac {(c+d \sec (e+f x))^2}{\sqrt {a+a \sec (e+f x)}} \, dx=\int { \frac {{\left (d \sec \left (f x + e\right ) + c\right )}^{2}}{\sqrt {a \sec \left (f x + e\right ) + a}} \,d x } \]

input
integrate((c+d*sec(f*x+e))^2/(a+a*sec(f*x+e))^(1/2),x, algorithm="maxima")
 
output
integrate((d*sec(f*x + e) + c)^2/sqrt(a*sec(f*x + e) + a), x)
 
3.2.67.8 Giac [F(-2)]

Exception generated. \[ \int \frac {(c+d \sec (e+f x))^2}{\sqrt {a+a \sec (e+f x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c+d*sec(f*x+e))^2/(a+a*sec(f*x+e))^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 
3.2.67.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d \sec (e+f x))^2}{\sqrt {a+a \sec (e+f x)}} \, dx=\int \frac {{\left (c+\frac {d}{\cos \left (e+f\,x\right )}\right )}^2}{\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}} \,d x \]

input
int((c + d/cos(e + f*x))^2/(a + a/cos(e + f*x))^(1/2),x)
 
output
int((c + d/cos(e + f*x))^2/(a + a/cos(e + f*x))^(1/2), x)